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Abstract— 

In order to get the most out of complicated software development processes, it is crucial to guarantee the quality of 

software systems. Forecasting and early detection of any software component problems or difficulties is a critical 

part of the overall process. This research analyzes the accuracy of prediction made by different machine learning 

algorithms for software defect detection using the JM1 dataset that was curated by NASA. These algorithms include 

Naïve Bayes, Decision Trees, Random Forest, Support Vector Machine, Logistic Regression, Artificial Neural 

Networks, and K-Nearest Neighbors. The paper emphasizes the need of using machine learning for early fault 

finding in software development.With an impressive 81% accuracy, precision, recall, and little Root-Mean-Square 

Error, the Random Forest model emerges as the clear winner in the trial findings. In addition, the researchers 

compared their findings to those of other studies, which shed light on the strengths and weaknesses of the suggested 

approach. Suggestions for further research are made in the study's conclusion. 

 

Index Terms— 

Predicting software bugs, faults, and using machine learning 

 

                               I.INTRODUCTION 

For the complicated software development process to be a success, it is essential that software systems be accurate 

and of high quality. Crucial to the process is the early identification and prediction of potential problems or errors in 

software components. In order to reduce the total cost of software maintenance, increase customer happiness, and 

improve software quality, early problem discovery is crucial. Evidence of the changing nature of software 

engineering data is shown by the JM1 dataset in particular. The JM1 program is a real-time predictive ground 

system that uses simulations to generate predictions. This dataset, which has been vetted by NASA, includes actual 

occurrences from that system. The complexity of software systems increases the difficulty of finding faulty 

components. Finding these problems is the first step in fixing software system quality. Machine learning algorithms 

have shown their effectiveness in this setting by reducing software errors and forecasting their occurrence. Machine 

learning, and more especially supervised learning algorithms, have shown tremendous promise in several domains, 

software engineering being only one of them. Due to their ability to detect patterns and correlations among massive 

datasets, these algorithms are ideal for program code that anticipates module issues. Consequently, this research will 

examine the effectiveness of several machine learning techniques using the JM1 dataset.This work aims to provide 

significantly more knowledge to the software quality prediction area by focusing on certain elements of the JM1 

dataset. In what follows, we'll go over the challenges of module failure prediction, the intricacies of the JM1 dataset, 

and the crucial role that machine learning plays in overcoming these challenges. Section II delves into the linked 

literature. The datasets and assessment procedure using machine learning methods are covered in Section III. 

Section V presents the findings and recommendations for further research, whereas Section IV details the 

experimental outcomes. 

 

                                II. RELATED WORK 

Predicting software defects and bugs using machine learning (ML) methods has been a hot topic in the last several 

years. Here we take a look at a number of seminal research articles that have added to this expanding area of study. 

In study [1], the researchers examined how Artificial Neural Networks, Decision Trees, and Naïve Bayes may be 

used to anticipate software bugs. Decision Trees, Artificial Neural Networks, and Linear Autoregression (AR) 

models outperformed POWM and AR in terms of root-mean-squared error (RMSE), according to the study that was 

based on three real-world testing and debugging datasets. With an average accuracy value over 97%, precision 
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measurements showed that all ML algorithms performed well when it came to bug prediction. In terms of average 

recall values, ANNs reached 99% and NB 96%; nevertheless, the DT classifier showed the best performance. When 

compared using the F-measure, DT was shown to be more effective than ANNs and NB. Using decision trees, 

logistic regression, random forests, and naive Bayes, Delphine Imaculate et al. [2] presented a methodical approach 

to bug prediction. Their research shows that the random forest model is the best with a 97% accuracy rate, using 

datasets from 15 GitHub Java and Python projects. In spite of its emphasis on thorough data preparation, the article 

did note several limitations, such as not delving into artificial neural networks or addressing the need for 

generalizability across different types of projects.In their extensive review of ML techniques, Sharma et al. [3] 

covers everything from neural networks and support vector machines (SVMs) to decision trees, evolutionary 

algorithms, ensemble learning, and more. One contribution came from Tanaka et al. [4], who tested the efficacy of 

the automated ML library auto-sklearn in predicting software module problems across different versions. Automated 

methods showed promise in defect prediction, with results that were competitive with those of the random forest 

model. The research highlighted the importance of data volume in automated machine learning effectiveness and the 

influence of changes in fault reasons between releases.To forecast software defects, X. Zhao et al. [5] compared six 

ML algorithms and came up with the Importance Descending Order Exclusion (IDOE) technique. According to the 

research, Random Forests are better for bigger datasets while LibSVM are better for smaller ones. The article 

provided helpful information on attribute selection techniques and classifier appropriateness for certain dataset sizes, 

while also recognizing that algorithm performance varies between datasets.Five ML classification methods were 

comprehensively assessed across NASA defect prediction datasets by Aydin and R. Samli [6]. The research 

highlighted the persistent high success rates of Random Forest, which provided unambiguous numerical 

performance measures, emphasizing its supremacy. The work failed to explicitly state its limits when making 

recommendations for future research, which might need more examination into issues like dataset imbalance or 

overfitting. Using a variety of ML algorithms—with an emphasis on feature selection and cross-validation—P and 

Kambli [7] presented an all-encompassing model for bug prediction. With an astounding 82.77% accuracy, Artifi-

cial Neural Networks (ANN) blew away other algorithms in the research, which was based on the PROMISE JM1 

dataset. The paper's strength was in its technique for bug prediction, which took into account crucial factors like 

feature selection and model validation, while also recognizing the need of dataset specificity. In their hybrid model, 

Prabha and Shivakumar [9] combined several ML algorithms with Principal Component Analysis (PCA) to reduce 

features. Among the results, Support Vector Classifier (SVC) stood out for its 98.70% accuracy rate in defect 

prediction across all datasets. There has to be additional data for further validation, and the research highlighted how 

feature selection tactics affect classifier accuracy.For the purpose of software defect prediction, Manjula et al. [10] 

investigated a number of classification approaches, including supervised, unsupervised, and semi-supervised ones. 

The significance of using quantitative software measures for early defect discovery was emphasized in the article. 

By contrasting several methods, you might learn about their advantages and disadvantages. By using machine 

learning algorithms, feature selection, and K-means clustering, Khalid et al. [11] made a contribution to software 

fault prediction. Notable findings were obtained on the CM1 dataset by their investigation. Specifically, SVM and 

improved SVM models attained accuracy rates of 99% and 99.80%, respectively, surpassing other models. Although 

there were constraints, such as the small dataset, using ensemble approaches and Particle Swarm Optimization 

(PSO) helped optimize the models even more. Commonly used metrics and datasets were outlined by Malhotra [13], 

who also classified ML approaches. The necessity for more comparisons between ML and Logistic Regression 

approaches is highlighted by the consistent outperformance of Random Forest models. 

 

                                     III. METHODOLOGY 

Along with the names and labels of the characteristics, this section provides dataset descriptions. Next, we chose 

machine learning methods to forecast software bugs. Figure 1 shows the metrics used to assess the performance of 

the machine learning model. These metrics include F1-score, recall, accuracy, precision, and root-mean-squared 

error (RMSE).I. MatrixThe JM1 dataset, created for the express purpose of software failure prediction, is made 

accessible via the NASA Metrics Data Program [8]. Static code metrics including branch count, lines of code 

metrics, and McCabe's and Halstead's measures are part of the collection, which has 10,885 instances and 22 

characteristics [5, 6]. A "C"-developed real-time predictive ground system, JM1 uses simulations to provide 

forecasts. Researchers have used this dataset to study the performance of various learners in defect prediction, 

drawing attention to the significance of false alarm rates, detection probabilities, and the impact of effort on 
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                                         Fig. 1. Methodology Workflow 

 

forecasting measures [6]. You can see the order of JM1's attributes in Table I. This study employed a two-part 

method to evaluate the model's efficacy: a training set included 80% of the samples, while a testing set had 20%. 

 

 

Utilized Algorithms for Machine LearningPreventing software failures early in the software development life cycle 

(SDLC) is possible with the use of machine learning technologies [21]. These approaches identify hidden patterns in 

historical software data.That is because it is feature-dependent on the dataset. It is difficult to choose the optimal 

method to use for fault prediction [20]. Naïve Bayes, Decision Trees, Random Forest, Support Vector Machine, 

Artificial Neural Networks, Logistic Regression, and K-Nearest Neighbors are six popular supervised machine 

learning algorithms that this paper intends to analyze extensively. The purpose of this research is to assess the 

performance accuracy and predictive capacity of different ML algorithms as they pertain to software bug prediction. 

This research provides a detailed comparison of the selected ML algorithms, outlining their respective benefits and 

drawbacks.Bayes' Naive (NB) method: The simplicity and efficacy of Naïve Bayes make it stand out as a 

probabilistic classifier. The Bayes theorem is its foundation, and it operates on the premise of independence between 

characteristics. The acronym NB refers to a family of algorithms that share the underlying idea that there is no 

relationship between the presence or absence of one characteristic and any other feature [1]. cited as [18]. 

Pattern recognition and machine learning are only two of the numerous fields that regularly make use of decision 
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trees (DTs), which are robust models. Hierarchical tests compare numerical properties at each node to a threshold 

value in a sequential fashion [22].An ANN, or artificial neural network, is; Modeled after biological brain networks, 

ANNs function as massively parallel systems. Networks of artificial neurons, or ANNs, calculate weighted sums of 

inputs and produce outputs that are sent back into the network. One or more outputs will be generated as a result of 

this procedure. Artificial neural networks (ANNs) learn complex patterns from labelled data, which is useful for bug 

prediction [7], [15]. Various ANN designs will provide varying results when applied to certain challenges [23]. 

The Random Forest ensemble learning method builds a number of decision trees during the training process. It 

makes accurate predictions by combining the work of many tree-structured classifiers. Random forest determines a 

variable's significance by shuffled (or permuted) it at random [25]. Random Forest's ensemble feature enhances both 

the accuracy of predictions and their generalizability. [2] [5].Support Vector Machine (SVM): SVM is a supervised 

machine learning model that is often used in binary classification applications. Because it may build a decision 

boundary between classes to attain maximum margins, it works very well with datasets that have minimal data [11]. 

One neighbor-dependent classification method is K-Nearest Neighbors (KNN). A KNN classifier is defined by 

measuring the proximity of vectors that represent converted open-source code according to parameters like design 

complexity using a distance metric. Finding patterns in datasets is a good fit for KNN [16].Logistic Regression: This 

statistical method is used to model the connection between the dependent variable and the independent factors. 

Multinomial logistic regression is an extension of logistic regression that can deal with variables that have more than 

one class [17].Criteria for Assessment (C.)The target variable is subjected to label encoding during data preparation. 

In addition, the one-hot approach is used to encode categorical characteristics. After that, we standardize the feature 

set by feature scaling, and after that, we delete the features from the target variable.The research employs a range of 

machine-learning approaches to forecast software faults. Some examples of these models are Naïve Bayes, Decision 

Tree, Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Random Forest, Logistic Regression, and 

Support Vector Machine (SVM). The training dataset is used to train the models, and then the test set is used to 

generate predictions. This study assessed the efficacy of ML systems for software defect prediction using a standard 

set of metrics trained on the produced confusion matrices. Here are the evaluation tools and confusion matrix that 

were utilized:The first tool is a confusion matrix, which is used to evaluate how well the machine learning models 

are doing. If you want to know how well a categorization algorithm did, this is the way to go [24]. All four types of 

false positives, true negatives, and true positives are examined in depth in this matrix. Using the confusion matrix as 

a starting point, several assessment measures are constructed [1].2) Accuracy: The accuracy of a classification 

model is a measure of its overall correctness. Using Equation 1 [1], [7], we may calculate the overall proportion of 

properly identified cases, including True Positives and True Negatives. 

 

 

3)Recision (sometimes called positive predictive value) measures how accurate a model is in predicting the future. 

Equation 2 shows the overall number of predicted positive instances, which includes both true and false positives. 

To get this ratio, the number of precisely expected positive cases, or True Positives, is divided by this total [1], [19]. 

 

 

4) Recall: The True Positive Rate, sometimes called Recall, evaluates a model's ability to identify positive instances, 

as shown in Equation 3. The ratio of all positive instances that were accurately predicted (True Positives) to all 

positive cases that actually occurred (True Positives + False Negatives) is known as the false positive rate [1], [7]. 

 

5) F-measure: The F-measure is the harmonic mean of recall and accuracy. To find a happy medium between recall 

and accuracy, Equation 4 provides a single measure to compare models. Taking into account both false positives and 

false negatives is vital when using the F-measure, which might be useful when there is an uneven distribution of 

classes [1], [7]. 
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The average size of the errors between the anticipated and actual values in Equation 5 is often calculated by 

regression tasks using Root-Mean-Square Error (RMSE).Serious errors are penalized more heavily than smaller 

ones.Use root-mean-squared error (RMSE) for regression problems where predicting the actual numerical value is 

important and error size is a concern [1]. 

 
 

 

                                 IV. EXPERIMENTAL RESULTS 

Part A: How Well Machine Learning Models WorkUsing Python's machine learning capabilities, this research 

evaluated six different machine learning algorithms for software bug prediction. The results for both the training and 

testing sets are shown in Table II. Among the tested models, the Random Forest model achieved an accuracy of 

81%, while the Logistic Regression model achieved an accuracy of 80%, placing it in second place. The models 

were more effective than Naïve Bayes, ANN, Decision Tree, SVM, and K-Nearest Neighbors. 

 

 
               Fig. 2. Performance Metrics for Different Algorithms on Testing Data. 

The Random Forest model then demonstrated the most accuracy in forecasting positive cases, with a precision of 

79%, making it the top performer in terms of precision. With a 75% accuracy rate, the Logistic Regression model 

was also very well. Recall, the second assessment matrix, quantifies the percentage of true positives that the models 

properly detected in Figure 2. With a recall of 81%, the Random Forest model outperformed the others, showing that 

it successfully detected a large number of real positive events.We also used the F-measure to compare the ML 

models. The top F1 score was achieved by Random Forest. Thus, Random Forest and Logistic Regression seem to 

provide the optimal balance of accuracy and recall, according to the F1 scores. Lastly, Random Forest stands out as 

the best performer in analyzing machine learning algorithms using RMSE. Its lowest score of 0.4254 indicates 

higher accuracy in predicting outcomes.The RMSE for Logistic Regression is 0.4378, indicating good performance 

as well. A somewhat larger average divergence between anticipated and actual values is shown by other models with 

somewhat higher RMSE values, which range from 0.4408 to 0.5072.B. Talking About ItA comparison study was 

conducted taking into account the performance of Random Forest, Logistic Regression, SVM, and Naïve Bayes. 
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consistent with previous research on the JM1 dataset, as shown in Table III, promising accuracy outcomes. 

The authors of the research [26] analyzed the JM1 dataset using a number of machine learning programs, including 

SAS, WEKA, See5, and ROCKY. The Naïve Bayes model achieved an accuracy of 80.30 percent, whereas the 

Random Forest model averaged 77.96 percent. When we apply sophisticated machine learning methods to the same 

dataset, however, we find that the accuracy increases. The authors of the independent study reported in [27] used the 

JM1 dataset to perform feature selection; they found that SVM achieved an accuracy of 80.66% and Logistic 

Regression an accuracy of 80.94%.Our study makes use of a one-of-a-kind dataset and state-of-the-art models, in 

contrast to what we observed in section II, where various authors used diverse datasets and approaches [1] [2] [11]. 

It is worth mentioning that our dataset and models continuously show better accuracy, which highlights how 

successful our technique is compared to previous approaches.Random Forest's ensemble nature, versatility, 

resilience to overfitting and outliers, feature significance analysis, and performance on the provided dataset all 

contribute to its strong performance in software bug prediction. 

 

 

V. CONCLUSION AND FUTURE WORK 

This research looked at software bug prediction using ML techniques and the JM1 dataset. The findings 

demonstrated that various methods were successful; the Random Forest model stood out with the highest accuracy 

(81%), precision (78.55%), recall (81%), F-measure, and minimum RMSE (0.4254). This is where Logistic Regres-

sion really shone. To gauge their impact on model performance, future studies may look into sophisticated feature 

engineering techniques. Models may be enhanced by including domain-specific knowledge and contextual data, 

which might lead to even more accurate predictions. 
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